222 research outputs found

    Helicity

    Get PDF

    Convective plan-form two-scale dynamos in a plane layer

    Full text link
    We study generation of magnetic fields, involving large spatial scales, by convective plan-forms in a horizontal layer. Magnetic modes and their growth rates are expanded in power series in the scale ratio, and the magnetic eddy diffusivity (MED) tensor is derived for flows, symmetric about the vertical axis in a layer. For convective rolls magnetic eddy correction is demonstrated to be always positive. For rectangular cell patterns, the region in the parameter space of negative MED coincides with that of small-scale magnetic field generation. No instances of negative MED in hexagonal cells are found. A family of plan-forms with a smaller symmetry group than that of rectangular cell patterns has been found numerically, where MED is negative for molecular magnetic diffusivity over the threshold for the onset of small-scale magnetic field generation.Comment: Latex. 24 pages with 3 Postscript figures, 19 references. Final version (expanded Appendix 2, 4 references added, notation changed to a more "user-friendly"), accepted in Geophysical and Astrophysical Fluid Dynamic

    Nonlinearity in a dynamo

    Full text link
    Using a rotating flat layer heated from below as an example, we consider effects which lead to stabilizing an exponentially growing magnetic field in magnetostrophic convection in transition from the kinematic dynamo to the full non-linear dynamo. We present estimates of the energy redistribution over the spectrum and helicity quenching by the magnetic field. We also study the alignment of the velocity and magnetic fields. These regimes are similar to those in planetary dynamo simulations.Comment: Accepted to Geophys. Astrophys. Fluid Dyna

    Helicity within the vortex filament model

    Get PDF
    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments

    The gradient of potential vorticity, quaternions and an orthonormal frame for fluid particles

    Full text link
    The gradient of potential vorticity (PV) is an important quantity because of the way PV (denoted as qq) tends to accumulate locally in the oceans and atmospheres. Recent analysis by the authors has shown that the vector quantity \bdB = \bnabla q\times \bnabla\theta for the three-dimensional incompressible rotating Euler equations evolves according to the same stretching equation as for \bom the vorticity and \bB, the magnetic field in magnetohydrodynamics (MHD). The \bdB-vector therefore acts like the vorticity \bom in Euler's equations and the \bB-field in MHD. For example, it allows various analogies, such as stretching dynamics, helicity, superhelicity and cross helicity. In addition, using quaternionic analysis, the dynamics of the \bdB-vector naturally allow the construction of an orthonormal frame attached to fluid particles\,; this is designated as a quaternion frame. The alignment dynamics of this frame are particularly relevant to the three-axis rotations that particles undergo as they traverse regions of a flow when the PV gradient \bnabla q is large.Comment: Dedicated to Raymond Hide on the occasion of his 80th birthda

    On the effects of turbulence on a screw dynamo

    Full text link
    In an experiment in the Institute of Continuous Media Mechanics in Perm (Russia) an non--stationary screw dynamo is intended to be realized with a helical flow of liquid sodium in a torus. The flow is necessarily turbulent, that is, may be considered as a mean flow and a superimposed turbulence. In this paper the induction processes of the turbulence are investigated within the framework of mean--field electrodynamics. They imply of course a part which leads to an enhanced dissipation of the mean magnetic field. As a consequence of the helical mean flow there are also helical structures in the turbulence. They lead to some kind of α\alpha--effect, which might basically support the screw dynamo. The peculiarity of this α\alpha--effect explains measurements made at a smaller version of the device envisaged for the dynamo experiment. The helical structures of the turbulence lead also to other effects, which in combination with a rotational shear are potentially capable of dynamo action. A part of them can basically support the screw dynamo. Under the conditions of the experiment all induction effects of the turbulence prove to be rather weak in comparison to that of the main flow. Numerical solutions of the mean--field induction equation show that all the induction effects of the turbulence together let the screw dynamo threshold slightly, at most by one per cent, rise. The numerical results give also some insights into the action of the individual induction effects of the turbulence.Comment: 15 pages, 7 figures, in GAFD prin

    Yoshizawa's cross-helicity effect and its quenching

    Full text link
    A central quantity in mean-field magnetohydrodynamics is the mean electromotive force EMF, which in general depends on the mean magnetic field. It may however have a part independent of the mean magnetic field. Here we study an example of a rotating conducting body of turbulent fluid with non-zero cross-helicity, in which a contribution to the EMF proportional to the angular velocity occurs (Yoshizawa 1990). If the forcing is helical, it also leads to an alpha effect, and large-scale magnetic fields can be generated. For not too rapid rotation, the field configuration is such that Yoshizawa's contribution to the EMF is considerably reduced compared to the case without alpha effect. In that case, large-scale flows are also found to be generated.Comment: 10 pages, 8 figures, compatible with published versio

    Magnetic helicity fluxes in an alpha-squared dynamo embedded in a halo

    Full text link
    We present the results of simulations of forced turbulence in a slab where the mean kinetic helicity has a maximum near the mid-plane, generating gradients of magnetic helicity of both large and small-scale fields. We also study systems that have poorly conducting buffer zones away from the midplane in order to assess the effects of boundaries. The dynamical alpha quenching phenomenology requires that the magnetic helicity in the small-scale fields approaches a nearly static, gauge independent state. To stress-test this steady state condition we choose a system with a uniform sign of kinetic helicity, so that the total magnetic helicity can reach a steady state value only through fluxes through the boundary, which are themselves suppressed by the velocity boundary conditions. Even with such a set up, the small-scale magnetic helicity is found to reach a steady state. In agreement with earlier work, the magnetic helicity fluxes of small-scale fields are found to be turbulently diffusive. By comparing results with and without halos, we show that artificial constraints on magnetic helicity at the boundary do not have a significant impact on the evolution of the magnetic helicity, except that "softer" (halo) boundary conditions give a lower energy of the saturated mean magnetic field.Comment: 12 pages, 5 figures, submitted to GAF

    Kinematic dynamo in spherical Couette flow

    Full text link
    We investigate numerically kinematic dynamos driven by flow of electrically conducting fluid in the shell between two concentric differentially rotating spheres, a configuration normally referred to as spherical Couette flow. We compare between axisymmetric (2D) and fully three dimensional flows, between low and high global rotation rates, between prograde and retrograde differential rotations, between weak and strong nonlinear inertial forces, between insulating and conducting boundaries, and between two aspect ratios. The main results are as follows. Azimuthally drifting Rossby waves arising from the destabilisation of the Stewartson shear layer are crucial to dynamo action. Differential rotation and helical Rossby waves combine to contribute to the spherical Couette dynamo. At a slow global rotation rate, the direction of differential rotation plays an important role in the dynamo because of different patterns of Rossby waves in prograde and retrograde flows. At a rapid global rotation rate, stronger flow supercriticality (namely the difference between the differential rotation rate of the flow and its critical value for the onset of nonaxisymmetric instability) facilitates the onset of dynamo action. A conducting magnetic boundary condition and a larger aspect ratio both favour dynamo action
    • …
    corecore